I. Los rayos táctiles

En tiempos anteriores a la antigua civilización griega, las ideas que se tenían sobre la naturaleza de la luz estaban llenas de misterio. Además, no se mantenían por mucho tiempo: desaparecían y regresaban en forma apenas diferente. Los antiguos griegos produjeron las primeras ideas útiles sobre la luz y, posiblemente por esto, se sostuvieron durante siglos. Los griegos no distinguían claramente la luz de la vista y basaban sus ideas sobre ambas en la hipótesis de los rayos visuales táctiles atribuida a Pitágoras. Según esta hipótesis, el ojo emite rayos rectos infinitamente tenues que al ser interrumpidos por los objetos producen la sensación de ver. Estos rayos táctiles deberían ser rectos para explicar la propagación rectilínea de la luz; o sea, para explicar el hecho de que podemos ver a través de un popote sólo si éste es recto (Figura 1).

Figura 1. La propagación rectilínea de la luz se puede demostrar con este sencillo experimento. La vela se ve por el popote sólo si éste está derecho.

La percepción por medio de esos rayos visuales sería, pues, análoga a la percepción táctil cuando utilizamos brazos y manos para discernir la forma y el tamaño de los objetos. Un objeto grande separaría más los rayos táctiles que un objeto pequeño y esta mayor separación angular de los rayos produciría en la mente la sensación de mayor tamaño del objeto más grande (Figura 2).

Figura 2. La hipótesis de los rayos visuales de Pitágoras suponía que éstos eran emitidos por los ojos y al ser interrumpidos por los objetos producían la sensación de ver. El tamaño de los objetos se percibía por la separación angular de los rayos interrumpidos.

La hipótesis de los rayos táctiles explicaba también la aparente disminución de tamaño de un objeto al alejarse, ya que los rayos táctiles interrumpidos por el objeto formarían un ángulo menor y menor, hasta reducirse a cero, al alejarse el objeto del observador. Esto explicaría por qué las líneas paralelas que se alejan indefinidamente parecen converger en un punto; el que posteriormente se llamaría “punto de fuga” por los artistas del Renacimiento (Figura 3). Más aún, conforme a esta hipótesis la disminución del tamaño aparente estaría en la misma proporción que el aumento en la distancia; esto es, si la distancia aumentara dos veces, el tamaño aparente disminuiría también dos veces. Como esto es precisamente lo que ocurre al tamaño aparente al aumentar la distancia, la hipótesis de los rayos táctiles se veía apoyada por la experiencia; al menos por esta experiencia.

Figura 3. La hipótesis de los rayos visuales explicaba la disminución del tamaño aparente de un objeto que se aleja; la separación angular de los rayos interrumpidos se reduce al aumentar la distancia entre el ojo y el objeto. Por esto las líneas paralelas que se alejan indefinidamente parecen converger hacia un punto del horizonte que posteriormente se llamó “punto de fuga”.

La hipótesis de los rayos táctiles era útil porque relacionaba matemáticamente el tamaño aparente y la distancia, y pudo emplearse en muchas actividades prácticas como el diseño y la proyección de obras de arquitectura o de ingeniería. Pero más importante para los griegos resultó su aplicación a la astronomía para calcular distancias y tamaños de cuerpos celestes; por ejemplo, para calcular el diámetro del Sol. Estas aplicaciones a la astronomía les permitieron formarse una idea del tamaño del Universo apoyada en observaciones y —sobre todo— apoyada en la geometría, que era la ciencia perfecta de la cultura griega. Todo esto debe haber contribuido a que la hipótesis de los rayos visuales táctiles fuera aceptada hasta por el mismo Euclides, el creador de la geometría, y que perdurara unos 1 500 años sin ser seriamente cuestionada.

II. Los rayos luminosos

La teoría pitagórica de los rayos táctiles prevaleció más de 1500 años. Esta larga vida de una teoría tan ingenua posiblemente se debió a la falta de una experimentación rigurosa que la pusiera a prueba, porque en realidad no resiste el menor cuestionamiento experimental. La hipótesis de los rayos táctiles que emanaban del ojo fue derrumbada de golpe por un extravagante científico árabe llamado Abu Ali ibn al-Hasan ibn al-Haitham, nacido en Basra, Irak, alrededor del año 965 d.C., fallecido en El Cairo, Egipto, el año 1039 y conocido después simplemente como Al-hazán. Este singular personaje llegó a Egipto en 996 d.C., contratado por el califa Al-Hakim para controlar las inundaciones del río Nilo, cosa que Alhazán se jactaba públicamente de poder hacer sin gran dificultad. Incapaz, sin embargo, de cumplir su irreal promesa y justamente temeroso de la ira del califa, Alhazán fingió demencia, hasta el fallecimiento del califa el año de 1021, para evitar la pena de muerte por su fracaso.

A pesar de sus problemas con el río Nilo y con el califa Al-Hakin, Alhazán pudo hacer un importante trabajo de investigación en la óptica, o ciencia de la luz. En su principal obra, titulada Kitab al-Manzir en árabe y traducida al latín como Opticae Thesaurus, Alhazán demuestra que la visión no puede deberse a rayos que partan del ojo al objeto, sino del objeto al ojo. De esta manera, distinguió claramente la luz del sentido de la vista. Un sencillo experimento que demuestra esto es el muy conocido de producir fuego enfocando por medio de una lupa la imagen del Sol sobre un papel (Figura 4). Si los rayos táctiles existieran, la imagen del Sol sobre el papel resultaría de rayos visuales que de alguna manera se habrían reflejado en el papel, pasado por la lente y alcanzado el Sol. El papel, por lo tanto, no debería inflamarse si cerráramos los ojos o miráramos para otro lado mientras se mantiene la imagen enfocada. Pero el papel sí se inflama si la lupa se mantiene a la distancia adecuada del papel, hagamos lo que hagamos; de manera que la imagen se forma por algo que llega del Sol, y no de nuestros ojos, al papel.

Otro experimento que también demuestra la existencia de la luz independientemente del sentido de la vista es la formación de imágenes en el sencillo instrumento llamado “cámara oscura” (Figura 5). Este instrumento emplea un pequeño orificio para producir una imagen de un objeto externo sobre una pantalla colocada en un cuarto oscuro o en una simple caja de cartón. La imagen que se observa es siempre invertida y esto no se puede explicar con los rayos táctiles, porque el objeto podría verse sobre la pantalla, desde el interior de la cámara sólo si estos rayos se reflejaran en la pantalla y salieran por el orificio.

Figura 4. Los fenómenos ópticos importantes en el siglo XIII. La propagación rectilínea de la luz, la reflexión de imágenes en espejos, la refracción de la luz en agua, el poder calorífico de los rayos solares concentrados por una lente y la aparición del arco iris.

Figura 5. La cámara oscura forma sobre una pantalla imágenes invertidas de los objetos situados frente a su pupila. Esto demuestra que la hipótesis de los rayos visuales es falsa.

De esta manera percibiríamos el objeto igual que si lo viéramos directamente; esto es, lo veríamos erecto y no invertido. Sin embargo, si suponemos que cada punto del objeto externo emite rayos rectos en todas direcciones, aquellos que partiendo de un punto en la parte superior del objeto pasaran por el orificio producirían un pequeño punto luminoso de la imagen en la parte inferior de la pantalla. La imagen completa estaría invertida, y esto es precisamente lo que se observa.

Sirviéndose de estos y de otros experimentos, Alhazán eliminó para siempre de la ciencia de la luz la hipótesis pitagórica de los rayos táctiles; aunque todavía usemos expresiones, como “echar una mirada”, que nos la recuerdan.