Details

Biology and Mathematics


Biology and Mathematics

History and Challenges
1. Aufl.

von: Roger Buis

139,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 20.09.2019
ISBN/EAN: 9781119663478
Sprache: englisch
Anzahl Seiten: 248

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>To formalize the dynamics of living things is to search for invariants in a system that contains an irreducible aspect of “fuzziness”, because biological processes are characterized by their large statistical variability, and strong dependence on temporal and environmental factors. What is essential is the identification of what remains stable in a “living being” that is highly fluctuating. <br /> <br /> The use of mathematics is not limited to the use of calculating tools to simulate and predict results. It also allows us to adopt a way of thinking that is founded on concepts and hypotheses, leading to their discussion and validation. Instruments of mathematical intelligibility and coherence have gradually “fashioned” the view we now have of biological systems.<br /> <br /> Teaching and research, fundamental or applied, are now dependent on this new order known as Integrative Biology or Systems Biology.</p>
<p>Foreword ix</p> <p>Introduction xv</p> <p><b>Chapter 1. On the Status of Biology: On the Definition of Life</b> <b>1</b></p> <p>1.1. Causality in biology 4</p> <p>1.1.1. Vitalism 8</p> <p>1.1.2. Teleology 10</p> <p>1.2. Variability in biology 13</p> <p>1.2.1. Time-dependence of biological processes 15</p> <p>1.2.2. Environment-dependence of biological processes 17</p> <p><b>Chapter 2. On the Nature of the Contribution Made by Mathematics to Biology</b> <b>19</b></p> <p>2.1. On the affinity of mathematics with biology 20</p> <p>2.2. Mathematics, an instrument of work and thought on biology 25</p> <p><b>Chapter 3. Some Historical Reference Points: Biology Fashioned by Mathematics</b> <b>35</b></p> <p>3.1. The first remarkable steps in biomathematics 37</p> <p>3.1.1. On the continuous in biology 37</p> <p>3.1.2. On the discrete in biology 39</p> <p>3.1.3. The notion of laws in biology 43</p> <p>3.1.4. The beginning of classical science: Descartes and Pascal 44</p> <p>3.1.5. Buffon and hesitations relating to the utility of mathematics in biology 45</p> <p>3.2. Some pertinent contributions from mathematics in the modern era 48</p> <p>3.2.1. The laws of growth 48</p> <p>3.2.2. Formal genetics 49</p> <p>3.3. Introduction of the notion of a probabilistic model in biology 56</p> <p>3.4. The physiology of C. Bernard (1813–1878): the call to mathematics 58</p> <p>3.5. The principle of optimality in biology 60</p> <p>3.6. Introduction of the formalism of dynamic systems in biology 61</p> <p>3.7. Morphogenesis: the need for mathematics in the study of biological forms 63</p> <p>3.7.1. General principles from D’Arcy Thompson 64</p> <p>3.7.2. Turing’s reaction–diffusion systems (1952): morphogenesis, a “break of symmetry” 69</p> <p>3.8. The theory of automatons and cybernetics in biology 70</p> <p>3.8.1. The theory of automatons 70</p> <p>3.8.2. The contribution of cybernetics 73</p> <p>3.8.3. The case of L-systems 74</p> <p>3.8.4. Petri’s networks 74</p> <p>3.9. Molecular biology 78</p> <p>3.9.1. On genetic information 81</p> <p>3.9.2. The linguistic model in biology 83</p> <p>3.10. Information and communication, important notions in biology 84</p> <p>3.11. The property of self-organization in biology 86</p> <p>3.11.1. Structural self-organization 87</p> <p>3.11.2. Self-reproductive hypercycle 88</p> <p>3.12. Systemic biology 89</p> <p>3.12.1. On the notion of system 89</p> <p>3.12.2. Essay in relational biology 90</p> <p>3.12.3. Emergence and complexity 93</p> <p>3.12.4. Networks 98</p> <p>3.12.5. Order, innovation and complex networks 104</p> <p>3.13. Game theory in biology 105</p> <p>3.14. Artificial life 109</p> <p>3.14.1. Biomimetic automatons 110</p> <p>3.14.2. Psychophysiology and mathematics: controls on learning 111</p> <p>3.15. Bioinformatics 112</p> <p><b>Chapter 4. Laws and Models in Biology</b> <b>115</b></p> <p>4.1. Biological laws in literary language 118</p> <p>4.1.1. The law of Cuvier’s organic correlations (1825) 118</p> <p>4.1.2. The fundamental biogenetic law 118</p> <p>4.2. Biological laws in mathematical language 119</p> <p>4.2.1. Statistical laws 121</p> <p>4.3. Theoretical laws 131</p> <p>4.3.1. Formal genetics 131</p> <p>4.3.2. Growth laws 132</p> <p>4.3.3. Population dynamics 133</p> <p><b>Chapter 5. Mathematical Tools and Concepts in Biology</b> <b>135</b></p> <p>5.1. An old biomathematical subject: describing and/or explaining phyllotaxis 136</p> <p>5.2. The notion of invariant and its substrate: time and space 140</p> <p>5.2.1. Physical time/biological time 142</p> <p>5.2.2. Metric space/non-metric space 143</p> <p>5.2.3. Multi-scale processes 147</p> <p>5.3. Continuous formalism 147</p> <p>5.3.1. Dynamics of a univariate process 148</p> <p>5.3.2. Structured models 149</p> <p>5.3.3. Oscillatory dynamics 151</p> <p>5.3.4. On the stability of dynamic systems 154</p> <p>5.3.5. Multivariate structured models 160</p> <p>5.3.6. Dynamics of spatio-temporal process 163</p> <p>5.3.7. Multi-scale models 171</p> <p>5.4. Discreet formalism 174</p> <p>5.5. Spatialized models 175</p> <p>5.5.1. Multi-agent models: dynamics of a biological association of the individual-centered type 175</p> <p>5.5.2. Electrophysiological models: transmission of electrical signals 176</p> <p>5.6. Random processes in biology 178</p> <p>5.6.1. Poisson process 181</p> <p>5.6.2. Birth–death processes. 182</p> <p>5.7. Logic kinetics of regulation 184</p> <p>Conclusion 189</p> <p>Glossary 201</p> <p>References 217</p> <p>Index 221</p>
<p>Roger Buis, Emeritus Professor at the Université de Toulouse, France, has taught Statistical Biometry and Biomathematics at various universities and engineering schools (agronomy). His research – initially focused on plant growth and morphogenesis – has been developed in the context of differential dynamical systems. </p>

Diese Produkte könnten Sie auch interessieren:

Bioinformatics and Computational Biology Solutions Using R and Bioconductor
Bioinformatics and Computational Biology Solutions Using R and Bioconductor
von: Robert Gentleman, Vincent Carey, Wolfgang Huber, Rafael Irizarry, Sandrine Dudoit
PDF ebook
223,63 €
A Computer Scientist's Guide to Cell Biology
A Computer Scientist's Guide to Cell Biology
von: William W. Cohen
PDF ebook
69,54 €
Chemical Signals in Vertebrates 11
Chemical Signals in Vertebrates 11
von: Jane Hurst, Robert J. Beynon, S. Craig Roberts, Tristram Wyatt
PDF ebook
234,33 €